| 000 | 10185nam a22004817i 4500 | ||
|---|---|---|---|
| 005 | 20250919185826.0 | ||
| 008 | 160902t20152015enka b 001 0 eng | ||
| 020 |
_a9781849736374 _qhardback _cRM943.18 |
||
| 039 | 9 |
_a201609271654 _basrul _c201609221225 _dbaiti _y09-02-2016 _zrahah |
|
| 040 |
_aNLM _beng _cNLM _erda _dYDXCP _dOCLCF _dOCLCO _dINU _dDLC _dUKM _erda |
||
| 090 | _aTJ853.4.M53M488 | ||
| 090 |
_aTJ853.4.M53 _bM488 |
||
| 245 | 0 | 0 |
_aMicrofluidics for medical applications / _cedited by Albert van den Berg, University of Twente, Enschede, The Netherlands ; Loes Segerink, University of Twente, Enschede, The Netherlands. |
| 264 | 1 |
_aCambridge, UK : _bRoyal Society of Chemistry, _c[2015]. |
|
| 264 | 4 | _c©2015. | |
| 300 |
_axvii, 303 pages : _billustrations ; _c24 cm. |
||
| 336 |
_atext _2rdacontent |
||
| 337 |
_aunmediated _2rdamedia |
||
| 338 |
_avolume _2rdacarrier |
||
| 490 | 1 |
_aRSC Nanoscience & Nanotechnology ; _x1757-7136, _vNo. 36 |
|
| 504 | _aIncludes bibliographical references and index. | ||
| 505 | 0 | 0 |
_gMachine generated contents note: _gch. 1 _tMicrotechnologies in the Fabrication of Fibers for Tissue Engineering / _rAli Khademhosseini -- _g1.1. _tIntroduction -- _g1.2. _tFiber Formation Techniques -- _g1.2.1. _tCo-axial Flow Systems -- _g1.3. _tWetspinning -- _g1.4. _tMeltspinning (Extrusion) -- _g1.5. _tElectrospinning -- _g1.6. _tConclusions -- _tAcknowledgements -- _tReferences -- _gch. 2 _tKidney on a Chip / _rKahp-Yang Suh -- _g2.1. _tIntroduction -- _g2.2. _tKidney Structure and Function -- _g2.3. _tMimicking Kidney Environment -- _g2.3.1. _tExtracellular Matrix -- _g2.3.2. _tMechanical Stimulation -- _g2.3.3. _tVarious Kidney Cells -- _g2.3.4. _tExtracellular Environment -- _g2.4. _tKidney on a Chip -- _g2.4.1. _tMicrofluidic Approach for Kidney on a Chip -- _g2.4.2. _tFabrication of Kidney on a Chip -- _g2.4.3. _tVarious Kidney Chips -- _g2.5. _tFuture Opportunities and Challenges -- _tReferences -- _gch. 3 _tBlood-brain Barrier (BBB): An Overview of the Research of the Blood-brain Barrier Using Microfluidic Devices / _rAlbert van den Berg |
| 505 | 0 | 0 |
_g3.1. _tIntroduction -- _g3.2. _tBlood-brain Barrier -- _g3.2.1. _tNeurovascular Unit -- _g3.2.2. _tTransport -- _g3.2.3. _tMultidrug Resistance -- _g3.2.4. _tNeurodegenerative Diseases -- Loss of BBB Function -- _g3.3. _tModeling the BBB in Vitro -- _g3.3.1. _tMicrofluidic in Vitro Models of the BBB: the'BBB-on-Chip' -- _g3.3.2. _tCellular Engineering -- _g3.3.3. _tBiochemical Engineering -- _g3.3.4. _tBiophysical Engineering -- _g3.4. _tMeasurement Techniques -- _g3.4.1. _tTransendothelial Electrical Resistance -- _g3.4.2. _tPermeability -- _g3.4.3. _tFluorescence Microscopy -- _g3.5. _tConclusion and Future Prospects -- _tAcknowledgements -- _tReferences -- _gch. 4 _tThe Use of Microfluidic-based Neuronal Cell Cultures to Study Alzheimer's Disease / _rPhilippe Renaud -- _g4.1. _tAlzheimer's Disease -- Increased Mortality Rates and Still Incurable -- _g4.2. _tUnknowns of Alzheimer's Disease -- _g4.2.1. _tMolecular Key Players of AD -- _g4.2.2. _tFrom Molecules to Neuronal Networks -- _g4.3. _tWhy Microsystems May Be a Key in Understanding the Propagation of AD -- _g4.3.1. _tRequirements for in Vitro Studies on AD Progression |
| 505 | 0 | 0 |
_g4.3.2. _tEstablishing Ordered Neuronal Cultures with Microfluidics -- _g4.4. _tMicro-devices-based in Vitro Alzheimer Models -- _g4.4.1. _tFirst Microtechnology-based Experimental Models -- _g4.4.2. _tRequirements of Future Micro-device-based Studies -- _g4.5. _tQuestions that May Be Addressed by Micro-controlled Cultures -- _tReferences -- _gch. 5 _tMicrobubbles for Medical Applications / _rMichel Versluis -- _g5.1. _tIntroduction -- _g5.1.1. _tMicrobubbles for Imaging -- _g5.1.2. _tMicrobubbles for Therapy -- _g5.1.3. _tMicrobubbles for Cleaning -- _g5.2. _tMicrobubble Basics -- _g5.2.1. _tMicrobubble Dynamics -- _g5.3. _tMicrobubble Stability -- _g5.4. _tMicrobubble Formation -- _g5.5. _tMicrobubble Modeling and Characterization -- _g5.5.1. _tOptical Characterization -- _g5.5.2. _tSorting Techniques -- _g5.5.3. _tAcoustical Characterization -- _g5.6. _tConclusions -- _tAcknowledgements -- _tReferences -- _gch. 6 _tMagnetic Particle Actuation in Stationary Microfluidics for Integrated Lab-on-Chip Biosensors / _rMenno W. J. Prins -- _g6.1. _tIntroduction -- _g6.2. _tCapture of Analyte Using Magnetic Particles |
| 505 | 0 | 0 |
_g6.2.1. _tThe Analyte Capture Process -- _g6.2.2. _tAnalyte Capture Using Magnetic Particles in a Static Fluid -- _g6.3. _tAnalyte Detection -- _g6.3.1. _tMagnetic Particles as Carriers -- _g6.3.2. _tAgglutination Assay with Magnetic Particles -- _g6.3.3. _tSurface-binding Assay with Magnetic Particles as Labels -- _g6.3.4. _tMagnetic Stringency -- _g6.4. _tIntegration of Magnetic Actuation Processes -- _g6.5. _tConclusions -- _tAcknowledgements -- _tReferences -- _gch. 7 _tMicrofluidics for Assisted Reproductive Technologies / _rShuichi Takayama -- _g7.1. _tIntroduction -- _g7.2. _tGamete Manipulations -- _g7.2.1. _tMale Gamete Sorting -- _g7.2.2. _tFemale Gamete Quality Assessment -- _g7.3. _tIn Vitro Fertilization -- _g7.4. _tCryopreservation -- _g7.5. _tEmbryo Culture -- _g7.6. _tEmbryo Analysis -- _g7.7. _tConclusion -- _tReferences -- _gch. 8 _tMicrofluidic Diagnostics for Low-resource Settings: Improving Global Health without a Power Cord / _rPaul Yager -- _g8.1. _tIntroduction: Need for Diagnostics in Low-resource Settings -- _g8.1.1. _tImportance of Diagnostic Testing -- _g8.1.2. _tLimitations in Low-resource Settings |
| 505 | 0 | 0 |
_g8.1.3. _tScope of Chapter -- _g8.2. _tTypes of Diagnostic Testing Needed in Low-resource Settings -- _g8.2.1. _tDiagnosing Disease -- _g8.2.2. _tMonitoring Disease -- _g8.2.3. _tCounterfeit Drug Testing -- _g8.2.4. _tEnvironmental Testing -- _g8.3. _tOverview of Microfluidic Diagnostics for Use at the Point of Care -- _g8.3.1. _tChannel-based Microfluidics -- _g8.3.2. _tPaper-based Microfluidics -- _g8.4. _tEnabling All Aspects of Diagnostic Testing in Low-resource Settings: Examples of and Opportunities for Microfluidics (Channel-based and Paper-based) -- _g8.4.1. _tTransportation and Storage of Devices in Low-resource Settings -- _g8.4.2. _tSpecimen Collection -- _g8.4.3. _tSample Preparation -- _g8.4.4. _tRunning the Assay -- _g8.4.5. _tSignal Read-out -- _g8.4.6. _tData Integration into Health Systems -- _g8.4.7. _tDisposal -- _g8.5. _tConclusions -- _tReferences -- _gch. 9 _tIsolation and Characterization of Circulating Tumor Cells / _rLeon W. M. M. Terstappen -- _g9.1. _tIntroduction -- _g9.2. _tCTC Definition in CellSearch System -- _g9.3. _tClinical Relevance of CTCs -- _g9.4. _tIdentification of Treatment Targets on CTCs |
| 505 | 0 | 0 |
_g9.5. _tTechnologies for CTC Enumeration -- _g9.6. _tIsolation and Identification of CTCs in Microfluidic Devices -- _g9.6.1. _tMicrofluidic Devices for CTC Isolation Based on Physical Properties -- _g9.6.2. _tMicrofluidic Devices to Isolate CTCs Based on Immunological Properties -- _g9.6.3. _tMicrofluidic Devices to Isolate CTCs Based on Physical as well as Immunological Properties -- _g9.6.4. _tCharacterization of CTCs in Microfluidic Devices -- _g9.7. _tSummary and Outlook -- _tReferences -- _gch. 10 _tMicrofluidic Impedance Cytometry for Blood Cell Analysis / _rDaniel Spencer -- _g10.1. _tIntroduction -- _g10.2. _tThe Full Blood Count -- _g10.2.1. _tClinical Diagnosis and the Full Blood Count -- _g10.2.2. _tCommercial FBC Devices -- _g10.3. _tMicrofluidic Impedance Cytometry (MIC) -- _g10.3.1. _tMeasurement Principle -- _g10.3.2. _tBehavior of Cells in AC fields -- _g10.3.3. _tSizing Particles -- _g10.3.4. _tCell Membrane Capacitance Measurements -- _g10.3.5. _tMicrofluidic FBC Chip -- _g10.3.6. _tAccuracy and Resolution -- _g10.3.7. _tAntibody Detection -- _g10.4. _tFurther Applications of MIC |
| 505 | 0 | 0 |
_g10.4.1. _tCell Counting and Viability -- _g10.4.2. _tParasitized Cells -- _g10.4.3. _tTumor Cells and Stem Cell Morphology -- _g10.4.4. _tHigh-frequency Measurements -- _g10.5. _tFuture Challenges -- _tReferences -- _gch. 11 _tRoutine Clinical Laboratory Diagnostics Using Point of Care or Lab on a Chip Technology / _rIstvan Vermes -- _g11.1. _tIntroduction -- _g11.2. _tPoint-of-care Testing -- _g11.2.1. _tCategorization of POCT Devices -- _g11.2.2. _tRole of POCT in Laboratory Medicine -- _g11.3. _tGlucometers -- _g11.3.1. _tThe WHO and ADA Criteria of Diabetes -- _g11.3.2. _tPlasma Glucose or Blood Glucose -- _g11.3.3. _tGlucometers in Medical Practice -- _g11.3.4. _tGlucometers in Gestational Diabetes -- _g11.3.5. _tContinuous Glucose Monitoring -- _g11.4. _ti-STAT: a Multi-parameter Unit-use POCT Instrument -- _g11.4.1. _tClinical Chemistry -- _g11.4.2. _tCardiac Markers -- _g11.4.3. _tHematology -- _g11.4.4. _tClinical Use and Performance -- _g11.5. _tConclusions -- _tReferences -- _gch. 12 _tMedimate Minilab, a Microchip Capillary Electrophoresis Self-test Platform / _rJan C. T. Eijkel -- _g12.1. _tIntroduction |
| 505 | 0 | 0 |
_g12.2. _tMicrofluidic Capillary Electrophoresis as a Self-test Platform -- _g12.2.1. _tConducting a Measurement -- _g12.2.2. _tMeasurement Process -- _g12.2.3. _tFrom Research Technology to Self-test Platform -- _g12.3. _tA Lithium Self-test for Patients with Manic Depressive Illness -- _g12.4. _tValidation Method -- _g12.4.1. _tApplied Guidelines -- _g12.4.2. _tAcceptance Criteria -- _g12.4.3. _tSample Availability, Preparation, and other Considerations -- _g12.5. _tValidation Results -- _g12.5.1. _tReproducibility -- _g12.5.2. _tLinearity -- _g12.5.3. _tMethod Comparison -- _g12.5.4. _tHome Test -- _g12.5.5. _tOther Study Results -- _g12.5.6. _tFinal Evaluation -- _g12.6. _tPlatform Potential -- _g12.6.1. _tCurrent Platform Capabilities -- _g12.6.2. _tFuture Possibilities and Limitations -- _g12.7. _tConclusions -- _tAcknowledgements -- _tReferences. |
| 650 | 0 | _aMicrofluidics. | |
| 650 | 0 | _aMedical technology. | |
| 700 | 1 |
_aBerg, A. van den _q(Albert), _eeditor. |
|
| 700 | 1 |
_aSegerink, Loes, _eeditor. |
|
| 830 | 0 |
_aRSC Nanoscience & Nanotechnology ; _x1757-7136, _vno. 36. |
|
| 907 |
_a.b16362317 _b2019-11-12 _c2019-11-12 |
||
| 942 |
_c01 _n0 _kTJ853.4.M53M488 |
||
| 914 | _avtls003610237 | ||
| 990 | _abety | ||
| 991 | _aFakulti Sains & Teknologi | ||
| 998 |
_at _b2016-02-09 _cm _da _feng _genk _y0 _z.b16362317 |
||
| 999 |
_c685264 _d685264 |
||