000 10185nam a22004817i 4500
005 20250919185826.0
008 160902t20152015enka b 001 0 eng
020 _a9781849736374
_qhardback
_cRM943.18
039 9 _a201609271654
_basrul
_c201609221225
_dbaiti
_y09-02-2016
_zrahah
040 _aNLM
_beng
_cNLM
_erda
_dYDXCP
_dOCLCF
_dOCLCO
_dINU
_dDLC
_dUKM
_erda
090 _aTJ853.4.M53M488
090 _aTJ853.4.M53
_bM488
245 0 0 _aMicrofluidics for medical applications /
_cedited by Albert van den Berg, University of Twente, Enschede, The Netherlands ; Loes Segerink, University of Twente, Enschede, The Netherlands.
264 1 _aCambridge, UK :
_bRoyal Society of Chemistry,
_c[2015].
264 4 _c©2015.
300 _axvii, 303 pages :
_billustrations ;
_c24 cm.
336 _atext
_2rdacontent
337 _aunmediated
_2rdamedia
338 _avolume
_2rdacarrier
490 1 _aRSC Nanoscience & Nanotechnology ;
_x1757-7136,
_vNo. 36
504 _aIncludes bibliographical references and index.
505 0 0 _gMachine generated contents note:
_gch. 1
_tMicrotechnologies in the Fabrication of Fibers for Tissue Engineering /
_rAli Khademhosseini --
_g1.1.
_tIntroduction --
_g1.2.
_tFiber Formation Techniques --
_g1.2.1.
_tCo-axial Flow Systems --
_g1.3.
_tWetspinning --
_g1.4.
_tMeltspinning (Extrusion) --
_g1.5.
_tElectrospinning --
_g1.6.
_tConclusions --
_tAcknowledgements --
_tReferences --
_gch. 2
_tKidney on a Chip /
_rKahp-Yang Suh --
_g2.1.
_tIntroduction --
_g2.2.
_tKidney Structure and Function --
_g2.3.
_tMimicking Kidney Environment --
_g2.3.1.
_tExtracellular Matrix --
_g2.3.2.
_tMechanical Stimulation --
_g2.3.3.
_tVarious Kidney Cells --
_g2.3.4.
_tExtracellular Environment --
_g2.4.
_tKidney on a Chip --
_g2.4.1.
_tMicrofluidic Approach for Kidney on a Chip --
_g2.4.2.
_tFabrication of Kidney on a Chip --
_g2.4.3.
_tVarious Kidney Chips --
_g2.5.
_tFuture Opportunities and Challenges --
_tReferences --
_gch. 3
_tBlood-brain Barrier (BBB): An Overview of the Research of the Blood-brain Barrier Using Microfluidic Devices /
_rAlbert van den Berg
505 0 0 _g3.1.
_tIntroduction --
_g3.2.
_tBlood-brain Barrier --
_g3.2.1.
_tNeurovascular Unit --
_g3.2.2.
_tTransport --
_g3.2.3.
_tMultidrug Resistance --
_g3.2.4.
_tNeurodegenerative Diseases -- Loss of BBB Function --
_g3.3.
_tModeling the BBB in Vitro --
_g3.3.1.
_tMicrofluidic in Vitro Models of the BBB: the'BBB-on-Chip' --
_g3.3.2.
_tCellular Engineering --
_g3.3.3.
_tBiochemical Engineering --
_g3.3.4.
_tBiophysical Engineering --
_g3.4.
_tMeasurement Techniques --
_g3.4.1.
_tTransendothelial Electrical Resistance --
_g3.4.2.
_tPermeability --
_g3.4.3.
_tFluorescence Microscopy --
_g3.5.
_tConclusion and Future Prospects --
_tAcknowledgements --
_tReferences --
_gch. 4
_tThe Use of Microfluidic-based Neuronal Cell Cultures to Study Alzheimer's Disease /
_rPhilippe Renaud --
_g4.1.
_tAlzheimer's Disease -- Increased Mortality Rates and Still Incurable --
_g4.2.
_tUnknowns of Alzheimer's Disease --
_g4.2.1.
_tMolecular Key Players of AD --
_g4.2.2.
_tFrom Molecules to Neuronal Networks --
_g4.3.
_tWhy Microsystems May Be a Key in Understanding the Propagation of AD --
_g4.3.1.
_tRequirements for in Vitro Studies on AD Progression
505 0 0 _g4.3.2.
_tEstablishing Ordered Neuronal Cultures with Microfluidics --
_g4.4.
_tMicro-devices-based in Vitro Alzheimer Models --
_g4.4.1.
_tFirst Microtechnology-based Experimental Models --
_g4.4.2.
_tRequirements of Future Micro-device-based Studies --
_g4.5.
_tQuestions that May Be Addressed by Micro-controlled Cultures --
_tReferences --
_gch. 5
_tMicrobubbles for Medical Applications /
_rMichel Versluis --
_g5.1.
_tIntroduction --
_g5.1.1.
_tMicrobubbles for Imaging --
_g5.1.2.
_tMicrobubbles for Therapy --
_g5.1.3.
_tMicrobubbles for Cleaning --
_g5.2.
_tMicrobubble Basics --
_g5.2.1.
_tMicrobubble Dynamics --
_g5.3.
_tMicrobubble Stability --
_g5.4.
_tMicrobubble Formation --
_g5.5.
_tMicrobubble Modeling and Characterization --
_g5.5.1.
_tOptical Characterization --
_g5.5.2.
_tSorting Techniques --
_g5.5.3.
_tAcoustical Characterization --
_g5.6.
_tConclusions --
_tAcknowledgements --
_tReferences --
_gch. 6
_tMagnetic Particle Actuation in Stationary Microfluidics for Integrated Lab-on-Chip Biosensors /
_rMenno W. J. Prins --
_g6.1.
_tIntroduction --
_g6.2.
_tCapture of Analyte Using Magnetic Particles
505 0 0 _g6.2.1.
_tThe Analyte Capture Process --
_g6.2.2.
_tAnalyte Capture Using Magnetic Particles in a Static Fluid --
_g6.3.
_tAnalyte Detection --
_g6.3.1.
_tMagnetic Particles as Carriers --
_g6.3.2.
_tAgglutination Assay with Magnetic Particles --
_g6.3.3.
_tSurface-binding Assay with Magnetic Particles as Labels --
_g6.3.4.
_tMagnetic Stringency --
_g6.4.
_tIntegration of Magnetic Actuation Processes --
_g6.5.
_tConclusions --
_tAcknowledgements --
_tReferences --
_gch. 7
_tMicrofluidics for Assisted Reproductive Technologies /
_rShuichi Takayama --
_g7.1.
_tIntroduction --
_g7.2.
_tGamete Manipulations --
_g7.2.1.
_tMale Gamete Sorting --
_g7.2.2.
_tFemale Gamete Quality Assessment --
_g7.3.
_tIn Vitro Fertilization --
_g7.4.
_tCryopreservation --
_g7.5.
_tEmbryo Culture --
_g7.6.
_tEmbryo Analysis --
_g7.7.
_tConclusion --
_tReferences --
_gch. 8
_tMicrofluidic Diagnostics for Low-resource Settings: Improving Global Health without a Power Cord /
_rPaul Yager --
_g8.1.
_tIntroduction: Need for Diagnostics in Low-resource Settings --
_g8.1.1.
_tImportance of Diagnostic Testing --
_g8.1.2.
_tLimitations in Low-resource Settings
505 0 0 _g8.1.3.
_tScope of Chapter --
_g8.2.
_tTypes of Diagnostic Testing Needed in Low-resource Settings --
_g8.2.1.
_tDiagnosing Disease --
_g8.2.2.
_tMonitoring Disease --
_g8.2.3.
_tCounterfeit Drug Testing --
_g8.2.4.
_tEnvironmental Testing --
_g8.3.
_tOverview of Microfluidic Diagnostics for Use at the Point of Care --
_g8.3.1.
_tChannel-based Microfluidics --
_g8.3.2.
_tPaper-based Microfluidics --
_g8.4.
_tEnabling All Aspects of Diagnostic Testing in Low-resource Settings: Examples of and Opportunities for Microfluidics (Channel-based and Paper-based) --
_g8.4.1.
_tTransportation and Storage of Devices in Low-resource Settings --
_g8.4.2.
_tSpecimen Collection --
_g8.4.3.
_tSample Preparation --
_g8.4.4.
_tRunning the Assay --
_g8.4.5.
_tSignal Read-out --
_g8.4.6.
_tData Integration into Health Systems --
_g8.4.7.
_tDisposal --
_g8.5.
_tConclusions --
_tReferences --
_gch. 9
_tIsolation and Characterization of Circulating Tumor Cells /
_rLeon W. M. M. Terstappen --
_g9.1.
_tIntroduction --
_g9.2.
_tCTC Definition in CellSearch System --
_g9.3.
_tClinical Relevance of CTCs --
_g9.4.
_tIdentification of Treatment Targets on CTCs
505 0 0 _g9.5.
_tTechnologies for CTC Enumeration --
_g9.6.
_tIsolation and Identification of CTCs in Microfluidic Devices --
_g9.6.1.
_tMicrofluidic Devices for CTC Isolation Based on Physical Properties --
_g9.6.2.
_tMicrofluidic Devices to Isolate CTCs Based on Immunological Properties --
_g9.6.3.
_tMicrofluidic Devices to Isolate CTCs Based on Physical as well as Immunological Properties --
_g9.6.4.
_tCharacterization of CTCs in Microfluidic Devices --
_g9.7.
_tSummary and Outlook --
_tReferences --
_gch. 10
_tMicrofluidic Impedance Cytometry for Blood Cell Analysis /
_rDaniel Spencer --
_g10.1.
_tIntroduction --
_g10.2.
_tThe Full Blood Count --
_g10.2.1.
_tClinical Diagnosis and the Full Blood Count --
_g10.2.2.
_tCommercial FBC Devices --
_g10.3.
_tMicrofluidic Impedance Cytometry (MIC) --
_g10.3.1.
_tMeasurement Principle --
_g10.3.2.
_tBehavior of Cells in AC fields --
_g10.3.3.
_tSizing Particles --
_g10.3.4.
_tCell Membrane Capacitance Measurements --
_g10.3.5.
_tMicrofluidic FBC Chip --
_g10.3.6.
_tAccuracy and Resolution --
_g10.3.7.
_tAntibody Detection --
_g10.4.
_tFurther Applications of MIC
505 0 0 _g10.4.1.
_tCell Counting and Viability --
_g10.4.2.
_tParasitized Cells --
_g10.4.3.
_tTumor Cells and Stem Cell Morphology --
_g10.4.4.
_tHigh-frequency Measurements --
_g10.5.
_tFuture Challenges --
_tReferences --
_gch. 11
_tRoutine Clinical Laboratory Diagnostics Using Point of Care or Lab on a Chip Technology /
_rIstvan Vermes --
_g11.1.
_tIntroduction --
_g11.2.
_tPoint-of-care Testing --
_g11.2.1.
_tCategorization of POCT Devices --
_g11.2.2.
_tRole of POCT in Laboratory Medicine --
_g11.3.
_tGlucometers --
_g11.3.1.
_tThe WHO and ADA Criteria of Diabetes --
_g11.3.2.
_tPlasma Glucose or Blood Glucose --
_g11.3.3.
_tGlucometers in Medical Practice --
_g11.3.4.
_tGlucometers in Gestational Diabetes --
_g11.3.5.
_tContinuous Glucose Monitoring --
_g11.4.
_ti-STAT: a Multi-parameter Unit-use POCT Instrument --
_g11.4.1.
_tClinical Chemistry --
_g11.4.2.
_tCardiac Markers --
_g11.4.3.
_tHematology --
_g11.4.4.
_tClinical Use and Performance --
_g11.5.
_tConclusions --
_tReferences --
_gch. 12
_tMedimate Minilab, a Microchip Capillary Electrophoresis Self-test Platform /
_rJan C. T. Eijkel --
_g12.1.
_tIntroduction
505 0 0 _g12.2.
_tMicrofluidic Capillary Electrophoresis as a Self-test Platform --
_g12.2.1.
_tConducting a Measurement --
_g12.2.2.
_tMeasurement Process --
_g12.2.3.
_tFrom Research Technology to Self-test Platform --
_g12.3.
_tA Lithium Self-test for Patients with Manic Depressive Illness --
_g12.4.
_tValidation Method --
_g12.4.1.
_tApplied Guidelines --
_g12.4.2.
_tAcceptance Criteria --
_g12.4.3.
_tSample Availability, Preparation, and other Considerations --
_g12.5.
_tValidation Results --
_g12.5.1.
_tReproducibility --
_g12.5.2.
_tLinearity --
_g12.5.3.
_tMethod Comparison --
_g12.5.4.
_tHome Test --
_g12.5.5.
_tOther Study Results --
_g12.5.6.
_tFinal Evaluation --
_g12.6.
_tPlatform Potential --
_g12.6.1.
_tCurrent Platform Capabilities --
_g12.6.2.
_tFuture Possibilities and Limitations --
_g12.7.
_tConclusions --
_tAcknowledgements --
_tReferences.
650 0 _aMicrofluidics.
650 0 _aMedical technology.
700 1 _aBerg, A. van den
_q(Albert),
_eeditor.
700 1 _aSegerink, Loes,
_eeditor.
830 0 _aRSC Nanoscience & Nanotechnology ;
_x1757-7136,
_vno. 36.
907 _a.b16362317
_b2019-11-12
_c2019-11-12
942 _c01
_n0
_kTJ853.4.M53M488
914 _avtls003610237
990 _abety
991 _aFakulti Sains & Teknologi
998 _at
_b2016-02-09
_cm
_da
_feng
_genk
_y0
_z.b16362317
999 _c685264
_d685264