Amazon cover image
Image from Amazon.com

Quantitative remote sensing in thermal infrared : theory and applications / Huajun Tang, Zhao-Liang Li.

By: Contributor(s): Series: Springer remote sensing/photogrammetryPublisher: Heidelberg : Springer, 2014Copyright date: ©2014Description: xxi, 281 pages : illustrations (some color) ; 24 cmContent type:
  • text
Media type:
  • unmediated
Carrier type:
  • volume
ISBN:
  • 3642420265
  • 9783642420269
Subject(s): Summary: This book provides a comprehensive and advanced overview of the basic theory of thermal remote sensing and its application in hydrology, agriculture, and forestry. Specifically, the book highlights the main theory, assumptions, advantages, drawbacks, and perspectives of these methods for the retrieval and validation of surface temperature/emissivity and evapotranspiration from thermal infrared remote sensing. It will be an especially valuable resource for students, researchers, experts, and decision-makers whose interest focuses on the retrieval and validation of surface temperature/emissivity, the estimation and validation of evapotranspiration at satellite pixel scale, and the application of thermal remote sensing.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Home library Collection Call number Materials specified Copy number Status Date due Barcode
AM PERPUSTAKAAN TUN SERI LANANG PERPUSTAKAAN TUN SERI LANANG KOLEKSI AM-P. TUN SERI LANANG (ARAS 5) - TA1570.T336 (Browse shelf(Opens below)) 1 Available 00002153480

Includes bibliographical references and index.

This book provides a comprehensive and advanced overview of the basic theory of thermal remote sensing and its application in hydrology, agriculture, and forestry. Specifically, the book highlights the main theory, assumptions, advantages, drawbacks, and perspectives of these methods for the retrieval and validation of surface temperature/emissivity and evapotranspiration from thermal infrared remote sensing. It will be an especially valuable resource for students, researchers, experts, and decision-makers whose interest focuses on the retrieval and validation of surface temperature/emissivity, the estimation and validation of evapotranspiration at satellite pixel scale, and the application of thermal remote sensing.

There are no comments on this title.

to post a comment.

Contact Us

Perpustakaan Tun Seri Lanang, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor Darul Ehsan,Malaysia
+603-89213446 – Consultation Services
019-2045652 – Telegram/Whatsapp
Email: helpdeskptsl@ukm.edu.my

Copyright ©The National University of Malaysia Library