TY - BOOK AU - Berg,A.van den AU - Segerink,Loes TI - Microfluidics for medical applications T2 - RSC Nanoscience & Nanotechnology SN - 9781849736374 PY - 2015///] CY - Cambridge, UK PB - Royal Society of Chemistry KW - Microfluidics KW - Medical technology N1 - Includes bibliographical references and index; Machine generated contents note; ch. 1; Microtechnologies in the Fabrication of Fibers for Tissue Engineering; Ali Khademhosseini --; 1.1; Introduction --; 1.2; Fiber Formation Techniques --; 1.2.1; Co-axial Flow Systems --; 1.3; Wetspinning --; 1.4; Meltspinning (Extrusion) --; 1.5; Electrospinning --; 1.6; Conclusions --; Acknowledgements --; References --; ch. 2; Kidney on a Chip; Kahp-Yang Suh --; 2.1; Introduction --; 2.2; Kidney Structure and Function --; 2.3; Mimicking Kidney Environment --; 2.3.1; Extracellular Matrix --; 2.3.2; Mechanical Stimulation --; 2.3.3; Various Kidney Cells --; 2.3.4; Extracellular Environment --; 2.4; Kidney on a Chip --; 2.4.1; Microfluidic Approach for Kidney on a Chip --; 2.4.2; Fabrication of Kidney on a Chip --; 2.4.3; Various Kidney Chips --; 2.5; Future Opportunities and Challenges --; References --; ch. 3; Blood-brain Barrier (BBB): An Overview of the Research of the Blood-brain Barrier Using Microfluidic Devices; Albert van den Berg; 3.1; Introduction --; 3.2; Blood-brain Barrier --; 3.2.1; Neurovascular Unit --; 3.2.2; Transport --; 3.2.3; Multidrug Resistance --; 3.2.4; Neurodegenerative Diseases -- Loss of BBB Function --; 3.3; Modeling the BBB in Vitro --; 3.3.1; Microfluidic in Vitro Models of the BBB: the'BBB-on-Chip' --; 3.3.2; Cellular Engineering --; 3.3.3; Biochemical Engineering --; 3.3.4; Biophysical Engineering --; 3.4; Measurement Techniques --; 3.4.1; Transendothelial Electrical Resistance --; 3.4.2; Permeability --; 3.4.3; Fluorescence Microscopy --; 3.5; Conclusion and Future Prospects --; Acknowledgements --; References --; ch. 4; The Use of Microfluidic-based Neuronal Cell Cultures to Study Alzheimer's Disease; Philippe Renaud --; 4.1; Alzheimer's Disease -- Increased Mortality Rates and Still Incurable --; 4.2; Unknowns of Alzheimer's Disease --; 4.2.1; Molecular Key Players of AD --; 4.2.2; From Molecules to Neuronal Networks --; 4.3; Why Microsystems May Be a Key in Understanding the Propagation of AD --; 4.3.1; Requirements for in Vitro Studies on AD Progression; 4.3.2; Establishing Ordered Neuronal Cultures with Microfluidics --; 4.4; Micro-devices-based in Vitro Alzheimer Models --; 4.4.1; First Microtechnology-based Experimental Models --; 4.4.2; Requirements of Future Micro-device-based Studies --; 4.5; Questions that May Be Addressed by Micro-controlled Cultures --; References --; ch. 5; Microbubbles for Medical Applications; Michel Versluis --; 5.1; Introduction --; 5.1.1; Microbubbles for Imaging --; 5.1.2; Microbubbles for Therapy --; 5.1.3; Microbubbles for Cleaning --; 5.2; Microbubble Basics --; 5.2.1; Microbubble Dynamics --; 5.3; Microbubble Stability --; 5.4; Microbubble Formation --; 5.5; Microbubble Modeling and Characterization --; 5.5.1; Optical Characterization --; 5.5.2; Sorting Techniques --; 5.5.3; Acoustical Characterization --; 5.6; Conclusions --; Acknowledgements --; References --; ch. 6; Magnetic Particle Actuation in Stationary Microfluidics for Integrated Lab-on-Chip Biosensors; Menno W. J. Prins --; 6.1; Introduction --; 6.2; Capture of Analyte Using Magnetic Particles; 6.2.1; The Analyte Capture Process --; 6.2.2; Analyte Capture Using Magnetic Particles in a Static Fluid --; 6.3; Analyte Detection --; 6.3.1; Magnetic Particles as Carriers --; 6.3.2; Agglutination Assay with Magnetic Particles --; 6.3.3; Surface-binding Assay with Magnetic Particles as Labels --; 6.3.4; Magnetic Stringency --; 6.4; Integration of Magnetic Actuation Processes --; 6.5; Conclusions --; Acknowledgements --; References --; ch. 7; Microfluidics for Assisted Reproductive Technologies; Shuichi Takayama --; 7.1; Introduction --; 7.2; Gamete Manipulations --; 7.2.1; Male Gamete Sorting --; 7.2.2; Female Gamete Quality Assessment --; 7.3; In Vitro Fertilization --; 7.4; Cryopreservation --; 7.5; Embryo Culture --; 7.6; Embryo Analysis --; 7.7; Conclusion --; References --; ch. 8; Microfluidic Diagnostics for Low-resource Settings: Improving Global Health without a Power Cord; Paul Yager --; 8.1; Introduction: Need for Diagnostics in Low-resource Settings --; 8.1.1; Importance of Diagnostic Testing --; 8.1.2; Limitations in Low-resource Settings; 8.1.3; Scope of Chapter --; 8.2; Types of Diagnostic Testing Needed in Low-resource Settings --; 8.2.1; Diagnosing Disease --; 8.2.2; Monitoring Disease --; 8.2.3; Counterfeit Drug Testing --; 8.2.4; Environmental Testing --; 8.3; Overview of Microfluidic Diagnostics for Use at the Point of Care --; 8.3.1; Channel-based Microfluidics --; 8.3.2; Paper-based Microfluidics --; 8.4; Enabling All Aspects of Diagnostic Testing in Low-resource Settings: Examples of and Opportunities for Microfluidics (Channel-based and Paper-based) --; 8.4.1; Transportation and Storage of Devices in Low-resource Settings --; 8.4.2; Specimen Collection --; 8.4.3; Sample Preparation --; 8.4.4; Running the Assay --; 8.4.5; Signal Read-out --; 8.4.6; Data Integration into Health Systems --; 8.4.7; Disposal --; 8.5; Conclusions --; References --; ch. 9; Isolation and Characterization of Circulating Tumor Cells; Leon W. M. M. Terstappen --; 9.1; Introduction --; 9.2; CTC Definition in CellSearch System --; 9.3; Clinical Relevance of CTCs --; 9.4; Identification of Treatment Targets on CTCs; 9.5; Technologies for CTC Enumeration --; 9.6; Isolation and Identification of CTCs in Microfluidic Devices --; 9.6.1; Microfluidic Devices for CTC Isolation Based on Physical Properties --; 9.6.2; Microfluidic Devices to Isolate CTCs Based on Immunological Properties --; 9.6.3; Microfluidic Devices to Isolate CTCs Based on Physical as well as Immunological Properties --; 9.6.4; Characterization of CTCs in Microfluidic Devices --; 9.7; Summary and Outlook --; References --; ch. 10; Microfluidic Impedance Cytometry for Blood Cell Analysis; Daniel Spencer --; 10.1; Introduction --; 10.2; The Full Blood Count --; 10.2.1; Clinical Diagnosis and the Full Blood Count --; 10.2.2; Commercial FBC Devices --; 10.3; Microfluidic Impedance Cytometry (MIC) --; 10.3.1; Measurement Principle --; 10.3.2; Behavior of Cells in AC fields --; 10.3.3; Sizing Particles --; 10.3.4; Cell Membrane Capacitance Measurements --; 10.3.5; Microfluidic FBC Chip --; 10.3.6; Accuracy and Resolution --; 10.3.7; Antibody Detection --; 10.4; Further Applications of MIC; 10.4.1; Cell Counting and Viability --; 10.4.2; Parasitized Cells --; 10.4.3; Tumor Cells and Stem Cell Morphology --; 10.4.4; High-frequency Measurements --; 10.5; Future Challenges --; References --; ch. 11; Routine Clinical Laboratory Diagnostics Using Point of Care or Lab on a Chip Technology; Istvan Vermes --; 11.1; Introduction --; 11.2; Point-of-care Testing --; 11.2.1; Categorization of POCT Devices --; 11.2.2; Role of POCT in Laboratory Medicine --; 11.3; Glucometers --; 11.3.1; The WHO and ADA Criteria of Diabetes --; 11.3.2; Plasma Glucose or Blood Glucose --; 11.3.3; Glucometers in Medical Practice --; 11.3.4; Glucometers in Gestational Diabetes --; 11.3.5; Continuous Glucose Monitoring --; 11.4; i-STAT: a Multi-parameter Unit-use POCT Instrument --; 11.4.1; Clinical Chemistry --; 11.4.2; Cardiac Markers --; 11.4.3; Hematology --; 11.4.4; Clinical Use and Performance --; 11.5; Conclusions --; References --; ch. 12; Medimate Minilab, a Microchip Capillary Electrophoresis Self-test Platform; Jan C. T. Eijkel --; 12.1; Introduction; 12.2; Microfluidic Capillary Electrophoresis as a Self-test Platform --; 12.2.1; Conducting a Measurement --; 12.2.2; Measurement Process --; 12.2.3; From Research Technology to Self-test Platform --; 12.3; A Lithium Self-test for Patients with Manic Depressive Illness --; 12.4; Validation Method --; 12.4.1; Applied Guidelines --; 12.4.2; Acceptance Criteria --; 12.4.3; Sample Availability, Preparation, and other Considerations --; 12.5; Validation Results --; 12.5.1; Reproducibility --; 12.5.2; Linearity --; 12.5.3; Method Comparison --; 12.5.4; Home Test --; 12.5.5; Other Study Results --; 12.5.6; Final Evaluation --; 12.6; Platform Potential --; 12.6.1; Current Platform Capabilities --; 12.6.2; Future Possibilities and Limitations --; 12.7; Conclusions --; Acknowledgements --; References ER -