Introduction to data science : data analysis and prediction algorithms with R / Rafael A. Irizarry.
Publisher: Boca Raton : CRC Press, [2019]Description: xxx, 713 pages : illustrations ; 26 cmContent type:- text
- unmediated
- volume
- 9780367357986
| Item type | Current library | Home library | Collection | Call number | Materials specified | Copy number | Status | Date due | Barcode | |
|---|---|---|---|---|---|---|---|---|---|---|
| AM | PERPUSTAKAAN TUN SERI LANANG | PERPUSTAKAAN TUN SERI LANANG KOLEKSI AM-P. TUN SERI LANANG (ARAS 5) | - | QA276.45.R3I759 (Browse shelf(Opens below)) | 1 | Available | 00002257662 |
Browsing PERPUSTAKAAN TUN SERI LANANG shelves, Shelving location: KOLEKSI AM-P. TUN SERI LANANG (ARAS 5) Close shelf browser (Hides shelf browser)
|
|
|
|
|
|
|
||
| QA276.45.R3E84 2010 A handbook of statistical analyses using R / | QA276.45.R3E84 2010 A handbook of statistical analyses using R / | QA276.45.R3F345 Analysis of questionnaire data with R / | QA276.45.R3I759 Introduction to data science : data analysis and prediction algorithms with R / | QA276.45.R3K443 Graphics for statistics and data analysis with R / | QA276.45.R3L865 Complex surveys : a guide to analysis using R / | QA276.45.R3R598 Statistical computing with R / |
Installing R and RStudio -- Getting started with R and RStudio -- R Basics -- Programming basics -- The tidyverse -- Importing data -- Introduction to data visualization -- ggplot2 -- Visualizing data distributions -- Data visualization in practice -- Data visualization principles -- Robust summaries -- Introduction to statistics with R -- Probability -- Random variables -- Statistical inference -- Statistical models -- Regression -- Linear models -- Association is not causation -- Introduction to data wrangling -- Reshaping data -- Joining tables -- Web scraping -- String processing -- Parsing dates and times -- Text mining -- Introduction to machine learning -- Smoothing -- Cross validation -- The caret package -- Examples of algorithms -- Machine learning in practice -- Large datasets -- Clustering -- Introduction to productivty tools -- Accessing the terminal and installing Git -- Organizing with Unix -- Git and GitHub -- Reproducible projects with RStudio and R markdown.
'The book begins by going over the basics of R and the tidyverse. You learn R throughout the book, but in the first part we go over the building blocks needed to keep learning during the rest of the book'-- Provided by publisher.
There are no comments on this title.
